
UNLIMITED F 10K 30

/

RSRE
MEMORANDUM No. 4195

ROYAL SIGNALS & RADAR
ESTABLISHMENT

r\I

SPECIFICATION OF VIPERI IN Z

Author: D H Kemp

t)

PROCUREMENT EXECUTIVE,
o MIR41ISTRY OF DEFENCE,

R S RE MALVERN,

WORCS. rVIQ

0

UNLIMITED

89 3 08 210

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Memorandum 4195

Tide

Specification of Viperl in Z

Accession For
Author NTIS GRA&I

D.H. Kemp DTIC TAB
Unannounced 0
Justification

Date DistribitIa4/

September 1988 Availability Codes
Ava aiqor

Dist Special

Summary

The Viperl microprocessor has already been specified mathematically in HOL. HOL, however,
is not well known outside the hardware verification community. This paper covers the specification
Viperl in the Z specification language. Various features of Viperl have been specified in Z which
did not occur in the top level HOL specification. It has not been possable to prove any
correspondence between this specification and the original HOL specification. The Work involved
in writing the Viperl specification has proved useful in writing the initial Viper2 specification.

) Controller, HMSO 1988

1 Introduction

In safety critical systems the idea of diversity improving safety is well
established. Safety critical systems may employ a number of processors
independently executing algorithms which obey a common high level specification.

The same can be seen to be true in the specification and design of safety critical
systems. Just as there may be an error in a specific microprocessor, which could
cause one channel of a system to fail in service, there may be an error in a
specification. The chances of this escaping the notice of the designers is reduced by
specifying the system in more than one way. This is most effective when the two
specification systems are basically different in character. This means then that by
ensuring the system conforms to both of the specifications the chance of an error
still being present is greatly reduced. Proofs of correspondence may then be
attempted to establish that the two texts have the same meaning.

It was decided to specify Viperl in Z for a number of reasons. Firstly Z was
sufficiently different to the HOL specification] to give reasonable diversity. Z is also
more widely known in terms of software specification than HOL. Another advantage

of Z was the fact that it had been used by J.Bowen 2 to specify the M6800
microprocessor. A lot of the groundwork developed by Bowen in specifying a
microprocessor instruction set has been used in this specification. Finally at RSRE
there is a Z editor and type checker available for use on the PerqFlex system.

This report is the first attempt to specify Viperl in Z. It makes no attempt to
explain the primary constructs of Z, nor act as a tutorial in Z. Readers not familiar
with Z should consult reference 3. Although the specification has been type checked,
it has neither been proved to be equivelent to the HOL specification, nor free from
logical errors. Any inconsistencies or errors found in this document should be
reported back to the Computing Division at RSRE.

2 Basic functions

2.1 Sits and Words

Initially the models adopted to represent bits and words need tt be
defined, along with the relationships between these models and the
natural numbers which they represent.

Bit e {0,l}

Word e (w:N-Bit I Kw>O , dom w - 0 .. (K(w) - 1) }

Bits are represented as the set of elements with values e or 1.
Words are represented as a set of partial functions from natural
numbers to Bits. The natural numbers correspond to the poston of the
bit in the word, ie the result of w(n) (the word w acting on the value

n) gives the n-lth Bit of the word w.

LSBMSB : Word - Bit

w W Word
LSB w = w 0
MSB w W aw-I

Find the most and least signf cant bits of the word.

val a Word M

w w Word
(sw=l) -* C val w = LSB w)

(fw>l) .* (val w - LSB w + 2 a val(succ-w)l

val returns the natural number represented by the word.Note succ;w
gives the effect of a Right shift, ie divide by two, on the word. ime
if succ;w is applied to n then first succ n is calculated, and then w
of n+I is calculated ie the n+Zth Bit is returned rather than the

n+lth one.

Ipred M - N

tin N predn-n-

Useful for left shifting (in a similar way to the technique

described above).

I (jiet_) : (Word.Bit) - Word

V w s Word; b r Bit
w Set b - wj(O0"b),(lb)}

The set function returns a word which has all of its bits set to the
specified value.

maxval Word N

lw : Word .

maxvsI w = val(w set 1)

(3 w : Word. ((val w) > maxval w)

Returns the maximum value which can be stored in the word.

wrd - N1 - (N - Word)

U size: Nl; valu : N; w : Word

(wrd size valu = w)(tow = size) A

(val w = valu mod succ(maxval w)

wrd returns the word of size size and set to the value valu (unless
the word cannot hold that value). (note no algorithm is given for
calculating wrd from its arguments, just the relationships which must
hold between the word returned and the input arguments).

(") t (Word.Word) - Ward

VlwZ ; Word .

wlwZ wl U (pred lwl," wZ

V wl,w2 ; Word . U(wl~w2) = owl + MwZ

Concatenate two words together.

-- i

Z.Z Bitwise Funct ions

The definition of the basic logical functions.
not slit . Bit

not (0-1,1-0>

Generate the logical inverse of the input bit.

(_.),(+_),(__) (Bit-Bit)-.Bit

(_ _) = ((0.0)-0, (0,1)..1.(1.0)-01(.1)-01}

Sta dard bit.se logical functions. (note. . s, + is or and o is
e'clusive or)

2.3 Logical fuctions on words

The standard wordwise logical functions, e finding the logical AND
of two words.

bnot - Word Word

V w ; Word
wnot w - w i not

Generate the inverse of the input word.

WordPair e

{ w :N . (Blt'Bt) I SW>O A dor w a 0 .. ((uw)-l) }

(-pair_) : (Word.Word)-WordPair

I wlwZ : Word
wI pair wZ =

(i : N I i E dor wl n doam wZ . i (wl i.wZ i) }

Takes a pair of words and represents them as a set of bit pairs,
indexed by a single natural number.

{ and_).(_or_),(_exor_) : (Word-Word)-.Word

wlw2 : Word .

wl and wZ = ((wi pair wZ))

w1 or wZ = ((wl pair w2) (

wi exor wZ = ((wi pair wZ) (_-))

Standard wordw-se logical functions.

{..<(_) : (Word-Bit) - Word

V: w ." Word; b ." B,tw cc b - ({w} 4 (pred ; w)) U C-b}

: (Bt.Word) - Word

1w: Word; : B it

b >> w - {((w)-l) - b} U (succ , w)

Shift right and left while inserting a particular bit into the right
or left most position.

2.4 Arithmetic Functions

Next the mathematical functions must be defined. This includes
introducing integers (ie 2's complement notation), and standard
mathematical operations and exceptions (for example add and carry).

value : Word -2

I w : Word .
((MSO " = 1) A Value " = val w succ (maival w)) v
((MSB w = 0) ^ value w = val w)

Return the integer value represented by the Word.This is using the
Z's complemert notat on. The most significent bit has a weghtnq of

-2n-
1.

So to cope with negative numbers subtract Zn.

maxposmaxneg : Word - Z

t wl,wZ : Word I awl C 1 A UwZ = ((mwl)-l)
maxpos wl = maxval wZ

maxneg wl = (maxval wZ) maxval wl)

Return the maximum pos-tive and negative numbers for a word of a
particular size.

(.agnextend) : (WordN 1l - Word

U wl,wZ : Word; length : NJ I

(length Z awl)A(UWZ = length)
(w1 signextend length) = (wZ set (MSB wl)) * w

Sign Extend the word to the new word length.

(_pad_) (Word'N1) - Word

U wl,w2 Word; length :N 1 I

(length Z aw1)A(awZ = length)
(wI pad length) = (wZ set 0) a wl

Pad out a word to the new word length with zeros.

m.trim_) - (Word-N1) - Word

U w : Word; length N I length Ow

w trim length (0 length) 4 w

Trim a word down to the new word length.

(_plus-) : (Word-Word) - Word

u wlzwZw3 Word I (awll ((#wZ))+I A (wZ) '(0w3)

((wZ plus w3) = (wl trim *wZ))
,- (value wl)=(value wZ)+(value w3)

Primitive addition. All that is checked for is that the input words
are of the same size. and that the output word is one bit larger, so
that carry can be detected. Word addition is defined in terms of
integer addition, it add,tion per se is not defined.

(.m-nus) : (Word-Word) - Word

Swl.',w3 : Word I (awl) = ((Aw>)z) A (awl) =(a.3

((wZ minus w3) = (wl trim a#2))
(o (value wl)=(value wZ)-(value w3)

Subtraction is defined similarily to addition, note no checks for
overflow etc.

S({_arry_) - (Word-Wordl - Bit

I d wl.wZ : Word I awl = uwZ .
(wl carry w2 = 1) ((v.l wl) + (val w2) > maxval wl)

Top level specification of carry, ie a carry is generated when the
addition result is larger than the maximum possible value which can be
stored.

(_.orrow.) : (Word-Word)
- Bit

V wl.wZ : Word I awl -#w2 .•
(wl borrow w2 - 1) o ((val w1) C (val wZ) I

Top level spec of Borrow.

(._overflow_) : (Word-Word) - Bit

U wlwZ : Word I awl = *wZ
(wl overflow w2 = 1) so

(value wl) + (value wZ) > meaxpos wl)v
(value wl) + (value w2) C masxneg w2))

Top level spec of overflow, it overflow when the sum is greater then

the largest positive value which can be held, or less than the largest
negative number.

(underflo~_) :(Word-Word) - Bit

t wl,wZ : Word I owl - NwZ
(wl underflow w2 1 1) 0*

(value w1) - (value wZ) > maxpos wl) v
(value w1) - (value wZ) C maxneg .Z

Top level spec of overflow on subtraction

(_equal_) : (Word-Word) - Bit

SwlwZ : Word I owl = w2

(w1 equal w2 = I) - (value wl - value w2)

Set to 1 if the two words have the same value (and 8 other-..se).
note they are not necessarly the same size of word.

(Jess-) (Word-Word) - Bit

t w1,w2 Word I Owl = Ow2 ,
(wl less w2 = 1) ow (value w1 c value wZ)

Set to 1 if the first word is less than the second (and 0
otherwise), note they are not necessarily the same size of word.

This completes the underlying theory of representing natural numbe-
arithmetic by operations on vectors of bits.

3 Viper Specifics

3.1 Word Lensths

These are the specific word sizes used in the Viperi processor.

Word 32 a { w Word I aw = 3Z }

-- for Data words

Word 20 a C w Word I ow = 20 }
-- For Address words

Word 4 { w :WordI a = 4 }

-- For the function select

Word 3 w :Word l w = 3 }

-- for the destination select

Word2 e w :Word ow = 2)

-- for the register and memory
select

Word, e {w :Word I#w = I Y

-- for the comparison select

and flass

Address e Word 20

Data & Word 32

Flag a Word1

3.Z Memory

The definition of the Memory and Peripheral spaces, and the
behaviour of these two regions.

-Memory

Mem Address - Data

RAMspace Address - Data
PERIspace Address - Data

10Bit

(o = 0) - (Mem = RAMspace)

(io = 1) (Mem = PERIspace)

Two regions of non overlapping address space RAM and PERiphe:'a. line
two types of memory totally cover the memory space.

_&Memory

Memory
Memory'

bMem Address - Data

(io = 0) * (Mem' = Mem * bMem)

If the locaton is in RAM then the address is updated, however wth
PERipheral space the values can change without any modification from
the processor. No mention of the behaviour of the PERipheral space is
given, because there is no way to model in general these very specific
devices. The specifiction of the behaviour of these devices is left to
the system specification.

HMemory i

8M~ory

N Mem = mor

No change in memory.

3.3 Resisters

The specification of the Viperi registers.

Registers

A Word 3z

X Word32

Y Word 3Z

P Wordzo

B Word1

The five visible registers of the Viper. A an accumulator, X and Y
index registers P the program counter and B the boolean flag.

6Reg~sters

Registers
Registers*

newp : Address

Note, P' is always updated (unless machine has stopped).

FRegisters

6Registers

A' =A
(C' =; ,

8' B h

ie no change.

3.4 Clock

The existance of a clock was not represented in any manner in the
HOL specification of Viperl, but it is included here as a matter of
completeness.

r Clock-

Clock simply counts up from e.

_aClock

Clock

Clock'
Cycles : N

Clk' = CMI + Cycles

Cycles is the number of cycles needed to complete the present
I nstruction. It is intended to include information about how many
cycles each instruction takes to complete in the schemas of the
individual instructions.

3.5 Stop

The definition of the stop flag and the way the processor behaves
when stopped and in the normal mode of operation.

Stop____[stop

Single Bit top determine whether the machine is stopped or not.

AStop

&Registers
Stop
Stop'

sval Bit
reset Bit

stop = 0
reset = 0
stop' = sval
newp = P plus (wrd 20 1)

Set the new value of the program counter and the stop b-t for the
next state. The machine is not stopped. The parameter reset is the
reset line to the processor. It is treated as a synchronous reset, e
it is only noticed at the start of an instruction.

Stopped,

-Memory
iReSisters
Stop

Stop,

Clock
reset Bit

stop I 1
reset = 0
p, - P

The machine has stopped. and cannot restart until there is a Reset.

3.6 Viper State

ViperOpCode

op Word 32

rsf Word 2

msf Word z

dsf Word 3

csf Word 1

fsf Word 4

addr Wordzo

op = rsf - msf - dsf csf fsf addr

The Viperl Op codeTie Op code is loaded in from the location
pointed to by the Program counter (P). The Op code constists of six
fields. These are,

(1) The Register Select Field - This selects which of the four
registers are going to be used as inputs to the ALU.

(Z) The Memory Select Field - This selects the addressing mode
for the operation.

(3) Destination Select Field - This selects the destination
register for the result, and also whether the result is a Jump or a
Call.

(4) Comparison Select Field - This selects whether the operation
is a comparison (setting the B flag) or an arithmetic or logical
function, returning a result. It is also used to distinguish between
Jump and Call instructions.

(5) The Function Select Field - This determins the ALU operation
for Comparisons or Arithmetic and Logical functions.

(6) The Address Field - The address used to pull in the second
operand from memory, or used as Jump address etc.

Arithat icAndLogicalUn it

result Word
32

offs Word 32

r'm Word 32

The inputs and outputs to/from the ALU. r holds he value from the
register, specified in the register select field of the Op code. which
is the first operand to the ALU. The parameter offs is the address of
the memory input to the ALU (or the actual input if the operation is
in immediate addressing mode). The parameter m is the actual value
passed as the second operand to the ALU.Finally result is the output
from the ALU.

Wiiper _________

&lemory
6Reg sters
dcloc
&stop

Viper OpCode
Ar ithmet icAndLogicaUt
bvel :Bit

op - Mem (P)

The Viper State. For the machine to change to a new state then the
machine must not be stopped.

-iper-

6Vper
-Memory
'Reg isters
6Stop

Viper state unchanged Cexept P updated)

Viper INIT___

dViper

Cl'= 0
stop, = 0

Val (P')I = 0
Val (A') - 0

Val W) . 0
Val (Y') - 0

Val (B') - 0

Machine on start up.

Reset ____

AWemor y
&Registers
Atlock
stop,
reset Bit

reset I

stop, 0
Val (p') s 0

va1 (A') = 0
Val W), = 0

Val (YV - 0

Val (9'3 = 0

Machine status on a Reset. This was not represented in the HOL
specification

4 Viper Operations

4.1 ALU inputs

In this section the various inputs to the V!perl ALU are specified.

RessterSelect

F iper

(vsl rsf a 0) - (r = A)
(val rsf = 1) (r = X)
(val rsf = 2) (r Y)
(vl rsf = 3) (r = P pad 32)

Select the resister to be the r input to the ALU.

-Offset

6iper

(val msf = 0) -* (offs - addr pad 32)
(val msf = 1) - o (offs = addr pad 32)
(val msf = 2) ,-s (offs - (addr pad 32) plus X)

(val msf = 3) ,- (offs - (addr pad 32) plus Y)

Determine the address of second word to be input to the ALU.

FReadFr omRAM

Offset

-((val dsf - 7) v (v.l dsf = 6))
(vsl fsf x 2) v (val csf = 1)

io = 0

Read in input to ALU from RAM. There is no read when a write is
specified (ie if the dsf is 6 or 7), there is also no read from RAM
when there is an input from PERI space (ie if the fsf is two and thecsf is zero), finally the address of the 1scat:on to be read from must
be in the RAM space.

ReadFromPERI

Offset

-((val dsf a 7) v (val dsf - 6))
val csf = 0
val faf - 2
io • 1

Read in an input from the PERIpheral space.

Input A ReadFromRAM v ResdFromPERI

NilMemoryRead

Offset

val fsf = 12

val csf a 0
-((val dsf = 6) v (val dsf - 7))

This is the case where there is to be no word read in from memory,
ie when the ALU function is a shift operation.

MemoryRead
FOffset

(Val msf - O)A(m offs) V
(Val msf 0 O)A(M - rms (offs trim 20

This is the case where the memory read is to go ahead if msf is
then it is immediate addressing. otherwise get the value from the
locetson peinted to by offs.

MemRead & (NilMemoryRead v I NilMremoryRead A MemoryRead) A Input

MemRead is either a nil memory read or a memory read.

4.2 Wite to memory

,Write_

S Vper
val csf = 0
(val dsf = 6) v (val dsf = 7)

Is the viper doing a write operation to main memory or peripheral
space.

-Output_

Offset

(val dsf =
6
)A(io = 1) v

(val dsf = 7)A(IO = 0)

Define the region of memory where the write is to take place, ie
either peripheral or main memory.

Memwr i te

Offset
RegisterSelect
Write
Output
EReg i sters

(val Sf = 0)A(bMem = 0) v
(val msf ; 0)A(bMem = { (offs trim 20) r)

Write to main memory or peripheral space.

4.3 Illegal Operations

Illegal operations, which will cause an error.

invalid : Word - Bit

U w : Word .
(invalid w = 1) *. (val w > maxval (wrd ZO 0))

Function set true if the word cannot be held in a z bit word.

SpareFunct on

FUiper
val csf = 0
-((val dsf = 6) v (val dsf a 7)

(val fsf = 13) v (val fsf 14) v (val fsf =1S)

The Op code is accessing one of the three spare functions of the
Vipers ALU.

IllesalCall11 ________________

F iper
val cSf - 0
val fsf = I
(val dsf = 0) v (val dsf =1) v (val dsf = 2)

The ALU operation is a Call, but the destination for the re!,ult is
set to A, X or Y.

IllegalPDestnationF 6Viper
val csf - 0
(v.l dsf - 3) v (val dsf = 4) v (val dsf = 5)
-((val fsf - l)v(val fsf = 3)v(val fsf = S)v(val fsf = 7))

The destination for the result froam the ALU is the Program counter.
However the ALU function is an illegal way of generating the new
Program Counter value.

IllegalWrite

Write

Val msf = 0

The operation is a write, but immediate addressing has been
specified.

_IllegalAddressFOffset
(val csf - 1)v(val fsf x 1Z)v(vdl dsf 6)v(val dsf = 7)
invalid offs

A memory location needs to be read, but the location to read from is
not a valid address.

IllegalPlncrement -F Wiper
invalid newp

The Program Counter is to be incremented past the end of the address
space.

Error _ i__

6Stop
EUiper

sval = 1
P' = newp

Machine must stop with all resgisters are as they were previously.

Errors a ((IllegalAddress v IllegalCall v IllegalWrite
v IllegalPlncrement v SpareFunction
v IllegalPOestination)

A Error)

4.4 Comparison Functions

,CompareFrame

RegisterSelect
MOeRead

P' newp
A' =A
X, X
Y, y

biMem - 0
Val csf - 1

This is the framing schema for comparison operations. All registers
are unchanged except for the Program counter. B6 is set in the various
comparisons below.

LessThan ______F CompareFrame

Val fsf =0
vsl B' (r less m)

Gr eater Than~rEqual To___

CompareFrame

Val fsf =IFva1 B = not Cr ies. m)

-EqualTo _________[CompareFrame
vsl fsf 2

va1 B' (r equal m)

tilotEqualTo ________FCompareFrame
va1 fsf =3

Va1 S' not (r equal m)

LessThanOrEqual To _________[CompareFrame
I. fsf 4

va 1 =' (r less m) + (r equal a)

IGreater Then_______________[CompareFrame
Val fsf S

val S' =not((r less a) + (r equal a))

-Uns i nedLessThan[Compar eFr .me

Val fsf =6
val B' (r borrow m)

-Uns ignedGreaterThanOrEqualTo-

CompareFrame

val fs = 7[a v.8' =not(r borrow a)

LLssThanOrS___________

FCompareFr ame
vI fsf - 8

Va ' :V C , r less m) + val18

QGreaterThanOrEqual ToOrB[CompareFrame
Va1 fsf *9
val S' *not(r less a) + val 8

-Equa To Or B -___________FCompareFrame
Val fsf 1D

val 8' Cr equal a) + va1 8

-NotEqualToOrB __________FCompareFrame
Val fsf =11

val B' =not(r equal m) + va1 8

LessThanOrEqual roore ____________F CompareFrame

val fsf 12

val B' =((r less mi) + (r equal m)l) + val B

-Greater ThanOrB __________________[CompareFrame
Val fsf = 13

v.1 B' -not((r less m) C r equal m) 4val B)

-Un. ignedLessThanOrB

CompareFrameFVal fsf =1+
Val B' (r borrow m) + val B

'Lins ignedcreaterrhanOrEqualroOrB[CompareFrame
Val fsf IS1
val B' =not (r borrow mi) + va1 B

Compare & UnsignedGreaterThan~rEquaITo~rB v LessThanOrB
v UnsignedLessThaiOrB v GreaterThamOrEqualToOrB
" GremterThanOrS v EqualTo~rB v UnsignedLessThan
" LessThan~rEqualToOrB v NotEqualTo~rB v GreaterThan
v Unsigne~dGreaterThanOrEqualTo v LessThan~rEqualTo
" NotEqua&iTo v EqualTo v GreaterThan~rEqualTo
v LessThan

Compare is the disjunction of all of the basic comparison schemas.

4.5 ALU Operations

ALUframe -

RegisterSelect

MemRead
Pwrite : Bit

(Pwrite=l) n ((val dsf=3)v(val dsf=4)v(val dsf=S))
val csf = 0
'((val dsf = 7) v (val dsf = 6))
6Mem = }

This is the framing schema for all of the ALU operations. Note
memory cannot be changed and it is not a comparison. Pwrite is I if
the destination of the result is the Program counter.

Negate

ALUframe

val fsf = 0

result = wnot m
B' = B
sval = 0

Invert the input word.

_Call _______________

ALUfrome

val fsf = 1
result = m
P. = ii

A' =A

=, X

Y'= newp

sval = not(Pwrite) * (invalid m)

Call a subroutine. Set Program counter to m. and leave the return
address in the Y register. Stop of there is a call to an illegal
address or there is not a legal P destination.

InputFromPERI

ALUframe

val fsf a Z
result - m

B' = B
sval = 0

Input a value from the PERIpheral space. Note io has already been
set to I in section 4.1 (ReadFromPERI).

ReadFromMemoryF ALUframe
val fsf = 3

result = m
8, = B

sval=Pwrite . (invalid m)

Return the value in memory, and stop if the location is not in
memory space.

ReadOp & (InputFromPERI v ReadFromMemory

The two read operations. ie the ALU is transparent.

UnsignedAdd
ALUframe

val fsf = 4
result = r plus m
val S' = r carry m

sval = 0

Add r to m, setting B if there is a Carry.

AddStopOnOverflow

ALUframe

vl fsf = S
result = r plus m

B' = B

sval = (r overflow m) + (invalid(result) . Pwrite)

Add r to m, stopping if there is an overflow, and setting 8 if there
is a Carry.

UnsignedSubtract

ALUframe

val fsf = 6
result = r minus m
val 6' = r borrow m

svsl = 0

Subtract m from r. and setting B if there is a Borrow.

SubtractStopOnOverflow

[ALUframe

|v.l fsf = 7

result r minus m

B6' =
sval = (r underflow m) + (invalid(result) Pwrite)

Subtract m from r, stopping on overflow and setting B if there is a
Borrow.

Arithmeticp a (UnsignedAdd v AddStopOnOverflow
v UnsignedSubtract v SubtractStopOnOverflow

The four arithmetic operations.

ExclusiveOr_

F ALUframe
val fsf = B
result = r exor m
0' = B
sval = 0

Returns the Exclusive Or of the two input words.

And

ALUframe

val fsf = 9
result = r and m

B, - B
sval = 0

Returns the Logical and of the two inputs.

Nor

ALUframe

val fsf - 10
result - wnot(r or m)

0'a B
sval = 0

Returns the inverted or of the two inputs.

-AndNot _________[ALt~fr ame
Val fsf = 11

result =r and wnot (mn)
8, = a
sval -0

Returns the logical and of the input register and the inverted
mnemory input.

LogicalOp a (Negate w AndNot V Nor v And V ExclusiveOr

The five logical operators.

Ar ithmetI c5h ftR I ht
ALUf race

val fsf =12
val csf - 0
result - M~SS r -~ r

svel -

Arithmetic Shift Right, shifting in the ?ISB (ie sign) bit.

LogicaiShift~ightF ALUfr ace

val fsf - 12
Val msf - I

result - va1 9 -~ r
val B' - LSB r
sval - 0

Logical Shift Right through the Boolean Flag 8.

-ArithineticShiftLeft ___[ALUfrae
val fsf - 12
Val msf - Z
result - r plus r
B' -

sval - (r overflow r)

Arithmetic Shift Left. Stoppirng the processor on ovetflow.

Lo i caiShiftLeftF ALUframe

val fsf -12

Val msf = 3
result = r cc val 8
val B' = MSB r

sval = 0

Logical Shift Left through the Boolean Flag B.

ShiftOp & (ArithmeticShiftRight v LogicalShiftRight
V ArithmeticShiftLeft V LogicalShiftLeft

The four shift operations.

UnusedFunct ions__________________F ALUframe

(val fsf = 13) v (val fsf = 14) v (vol fsf = 1S)
result = r

8, = 8
svel 1

The function called is one of the three unused functions in the
Viper ALU. This will cause the Viper to stop.

ALU a (ReadOp v ArithmeticOp
V LogicalOp v ShiftOp w UnusedFunctions

The result from the ALU. is one of the above functional groups.

ResultToA __

FALUframe
val dsf = 0

A' result
X, x

P' newp

Store the result from the ALU in the A register.

,ResultToX_

ALUframe

val dsf -1
A' A
X'= result
Y, Y

P'= newp

Store the result from the ALU in the X register.

,ResultToY ___

ALUframe

val dsf -Z
A' = A
X= X
Y' = result
P' = newp

Store the result from the ALU in the Y register.

-Jump

ALUfreme

Val fsf 0 1
A' =A

=, X
X° =Y

P'= result

Branch instruction (as opposed to a call) simply set the program
counter to be equal to the result from the ALU.

,Conditions_

ALU

[val dsf - 3) v
I (val dsf 4) A (val 8= 1)) V

((val dsf "5) A (val B - 0))

The values of dsf for the various conditional jumps and calls. For
the unconditional call dsf is 3, call on B set dsf is 4 and call on 8
0 is dsf equal to S.

Destination B [ResultToA v ResultToX v ResultToY v
(Jump A Conditions))

ALUOp a (ALU A Destination) v (Call A Conditions)

Nollp

F B-V i per

Val csf 0

(Val dsf - S)A(VOI 9 1) v (Val dsf 4)A(VO1 8 0)

P' = newp

4.6 Next Viper State

OKState S - (Errors) A (Memwrite v NoOp v Compare v ALUOp v Reset)

NextState a (Errors v OKState v Stopped v Reset)

The next state is one of four cases, it is either stopped or an
error in which case the next state will be stopped, or it will be a
reset and the next state will be the initial state, or it will
continue to work normally.

5 Conclusions

The document gives an initial specification of Viperl in 2. It has
demonstrated that Z can give a higher level specification than the HOL
specification. 2 has also been shown to be a useful language to
specify a microprocessor in.

Although this specification has been written some time after the
HOL specification. it was still a worthwhile exercise. This
specification can be checked against the HOL version. The experience
gained has also been useful in specifying Viper2.

6 Acknowleuents

Wi J Cullyer. C Pygott and J Kershaw for their help with the Viperl
and the HOL spec.

C O'Hallermn for his help with the 2 editor and type checker.

S Iliseman. for checking the specification, and suggesting
modifications.

7 References

I. Bowen J. The Formal Specification of a Microprocessor
instruction set.

Z. Cullyer i.J Viper tlicroprocessor:Forial Specification
RSRE Report No. 85613 October 1365.

3. Ian Hay'es (editor) Specification Case Studies
Prentice-Hll internet ional series in
computer science, 1967

DOCUMENT CONTROL SHEET

Overall security classification of sheet ... A I TT

(As far as possible this sheet should contain only rnclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memorandum 4 195 - Pas,flcaion

I lUnclassified

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) Royal Signals and Radar Establishment

7784000 St Andrews Road, Malvern, Worcestershire WR14 3PS

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title
SPECIFICATION OF VIPERI IN Z

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference namers) Title, place and date of conference

B. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pc. ref.

Kemp D H 1988.9 34

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of pacer

Ab~tract

The Viperl microprocessor has already been specified mathematically in HOL. HOL,
however, is not well known outside the hardware verification community. This
paper covers the specification Viperl in the Z specification language. Various
features of Viperl have been specified in Z which did not occur in the top level
HOL specification. It has not been possible to prove any correspondence between
this specification and the original HOL specification. The work involved in
writing the Viperl specification has proved useful in writing the initial Viper2

specification.

S80/48

